parrishjaclyn0oxmhy1
parrishjaclyn0oxmhy1 parrishjaclyn0oxmhy1
  • 01-04-2019
  • Mathematics
contestada

Using the completing-the-square method, rewrite f(x) = x2 - 6x + 2 in vertex form.
​

Respuesta :

gmany
gmany gmany
  • 07-04-2019

Answer:

[tex]\large\boxed{f(x)+(x-3)^2-7}[/tex]

Step-by-step explanation:

[tex]\text{The vertex form of equation}\ y=ax^2+bx+c:\\\\y=a(x-h)^2+k\\\\\text{We have the equation:}\\\\f(x)=x^2-6x+2=x^2-2(x)(3)+1=x^2-2(x)(3)+3^2-3^2+2\\\\\text{Use}\ (a-b)^2=a^2-2ab+b^2\to x^2-2(x)(3)+3^2=(x-3)^2\\\\f(x)=(x-3)^2-9+2=(x-3)^2-7[/tex]

Answer Link

Otras preguntas

What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
find the circumference of a circle whose radius is 15.4cm
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
find the circumference of a circle whose radius is 15.4cm
find the circumference of a circle whose radius is 15.4cm
What value of x makes the equation true ? 4(2x-4)=16
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
What value of x makes the equation true ? 4(2x-4)=16